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Abstract. The dynamics of the population imbalance of bosons in a double-well potential is investigated
from the point of view of many-body quantum mechanics in the framework of the two-mode model. For
small initial population imbalances, coherent superpositions of almost equally spaced energy eigenstates
lead to Josephson oscillations. The suppression of tunneling at population imbalances beyond a critical
value is related to a high concentration of initial state population in the region of the energy spectrum with
quasi-degenerate doublets. Negligible coherences among adjacent doublets result in imbalance oscillations
with a very small amplitude. For unaccessible long times, however, the system recovers the regime of
Josephson oscillations.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices, and topological excitations – 03.65.-w Quantum mechanics – 05.30.Jp Boson systems

The understanding of many-body quantum systems from
the theoretical and experimental points of view has under-
gone a considerable development during the past decade.
Unifying concepts of several branches of physics are un-
der development, creating an interdisciplinary scenario for
the understanding of quantum mechanical paradigms. One
of the simplest many-body systems to be realized exper-
imentally and studied theoretically are ultra-cold bosons
in a double-well potential. This system is very rich ex-
hibiting a great variety of quantum phenomena such as
interference [1], tunneling/self-trapping [2–11], and the
entanglement of macroscopic superpositions [12]. Lately
this system has been extensively studied, especially af-
ter the realization of several experiments in the area. The
usual theoretical approach to weakly interacting Bose-
Einstein condensates (BECs) is a mean-field approxima-
tion, namely the nonlinear Gross-Pitaevski equation [3,
9,13–16], which has proven to adequately explain a wide
variety of experimental observations. Corrections to the
mean-field [17] and quantum solutions [3,5,10,11] have
also been explored.

Recently, the dynamics of a bosonic gas confined in
two or more wells of an optical lattice has been experimen-
tally investigated. In particular, Josephson oscillations in
a one-dimensional optical lattice [18,19] and macroscopic
tunneling of bosons in a double-well [2] were observed.
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In the latter experiment, the population in the two wells
exhibits Josephson oscillations if the initial difference in
population is below a critical value, which depends on the
tunneling rate, the strength of the interparticle interaction
and the total number of bosons. Above this critical popu-
lation imbalance, tunneling appears to be suppressed and
the populations are locked in each potential well. Based on
a mean field treatment, this macroscopic “self-trapping”
is attributed to the non-linearity of the Gross-Pitaevski
equation [4,8].

In this article, we discuss the experimental non-
observation of tunneling for initial population imbalances
larger than a critical value in the framework of the quan-
tum many-body theory. The dynamics of bosons in a
double-well potential is based on a largely explored soluble
two-mode approximation to the many-body Hamiltonian
(the two-site Bose-Hubbard Hamiltonian). We review and
use the well-known structure of the energy spectrum of the
model and its correspondent eigenstates for the symmet-
ric and asymmetric double-well potentials to investigate
the time evolution of the imbalance population, in partic-
ular the self-trapping phenomena. The time evolution of
the population imbalance and the spectral properties of
the two-site Bose-Hubbard Hamiltonian have been stud-
ied before in several papers (see for example [3,5,10,11]).
As a new feature, we find that the change of behavior
of the dynamics of the population imbalance is related
to the structure of the energy spectrum and the role of
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populations and coherences contained in the initial many-
body wave function.

The two-site Bose-Hubbard Hamiltonian is written as

H = − J

2
(a†1a2 + a†2a1)

+
U

2
(n1(n1 − 1) + n2(n2 − 1)) +

δ

2
(n1 − n2), (1)

where a†i and ai are creation and annihilation operators for
a boson in the ith site (i = 1, 2), ni = a†iai, U is the on-site
two-body interaction parameter, J is the hopping param-
eter and δ is an asymmetry parameter corresponding the
difference of the one-boson energies in the two sites, so
that the perfectly symmetric two site trap corresponds to
δ = 0. This Hamiltonian has been shown to adequately
describe the dynamics of bosons in a two-well potential
under the assumption that the interaction energy U is
much smaller than the level spacing of the external trap,
allowing for a two-mode approximation [3]. Extensions of
this model including two-body hopping terms related to
the two-boson interaction have been considered [16,20],
but will be ignored here as they do not affect the main
argument. The total number of bosons is clearly a con-
served quantity, and consequently the exact energy spec-
trum can be obtained numerically by diagonalizing finite
matrices. A convenient base for N bosons consists of the
states |n1, n2〉 = |n,N − n〉, n0, . . . , N , the labels ni be-
ing the eigenvalues of the corresponding number opera-
tors. Note that in the no-hopping, symmetric limit, J = 0,
δ = 0, H is diagonal in this basis and the states |n,N−n〉
and |N − n, n〉 are degenerate (whenever different). The
distance between successive doublets increases with popu-
lation imbalance, while hopping matrix elements decrease
due to intervening bosonic factors. When the effects of
hopping are perturbatively small, also small admixtures of
components |n′, N−n′〉 (with n′ �= n) will occur, and dou-
blet degeneracy will be slightly removed. The upper graph
in Figure 1 shows a numerical calculation of the energy
spectrum for N = 100 bosons in a symmetric double well
(δ = 0) with J/U = 3.33. This choice of parameters corre-
sponds to Λ ≡ NU/(2J) = 15 corresponding to the exper-
imental situation of reference [2]. The resulting spectrum
is seen to consist of two qualitatively different regions: a
lower region of nearly equidistant energy levels dominated
by smaller population imbalances with stronger hopping
effects and a region still consisting of nearly degenerate
doublets in which the effects of hopping are perturbative
(cf. Ref. [3]). A semi-classical analysis of this spectrum can
be found in references [15,21]. In the classical phase space
the low-lying excited states are related to librations in
a pendulum-like energy landscape, while the higher-lying
states correspond to trapping around population asym-
metric energy maxima in the energy landscape. As the
relative tunneling parameter J/U is increased, this sepa-
ration shifts towards larger energies and, correspondingly,
quantum numbers. As a consequence, the doublet region
becomes smaller.

The tunneling dynamics of the initial state |ψ(0)〉 is
characterized by the temporal evolution of the population
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Fig. 1. Upper graph: Hamiltonian energy spectrum for
100 bosons in a symmetric double-well potential for J/U =
3.333 corresponding to Λ = 15. Lower graph: density plot of the
occupation probability of symmetric Hamiltonian eigenstates
|m〉 as a function of the initial population imbalances z(t = 0)
for the same parameters as the upper graph. The gray scale
gives the population of the corresponding eigenstate. Below a
critical value zc ≈ 0.5, only states with almost equal energy
spacing are populated, while above zc the quasi-degenerate
doublet states are occupied.

imbalance

z(t) ≡ 1
N

〈ψ(t)|(n1 − n2)|ψ(t)〉,

the time evolution of the initial state being given as

|ψ(t)〉 =
∑

m

cme
−iEmt|Em〉

with cm = 〈Em|ψ(0)〉, Em and |Em〉 being, respec-
tively, the eigenvalues and eigenstates of the symmetric
Hamiltonian (δ = 0 in Eq. (1)). In this way one obtains

z(t) =
∑

m

zmm + 2
∑

m<n

zmn cos
[
(Em − En)t

�

]
(2)

where

zmn =
1
N
c∗mcn〈Em|(n1 − n2)|En〉. (3)
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Following the experimental procedure adopted in refer-
ence [2] the system is initially prepared in the ground state
of an asymmetric double-well potential (δ �= 0) which is
then suddenly changed to the symmetric regime (δ = 0),
under which it is left to evolve. The relevant features of the
initial state for this subsequent dynamics are contained in
its spectral decomposition in the symmetric well eigen-
states.

The relative importance of two regions of the energy
spectrum can be varied through the value of δ chosen for
the preparation of the initial state. In the lower graph
of Figure 1 the occupation probability |cm|2 of the eigen-
states |m〉 as a function of the initial population imbalance
z(0) is depicted. For small z(0) only the lowest few energy
eigenstates are populated. The spread of the distribution
of populated states increases as z(0) increases, but for z(0)
below a critical value zc ≈ 0.5 only energy eigenstates
with nearly equal energy splitting are occupied (see upper
graph in Fig. 1). As follows from equation (2), coherences
between these states will lead to a macroscopic oscillation
of the population imbalance at a frequency given by this
energy splitting. For larger values z(0) > zc the scenario
changes and only doublet states are occupied. As these
two states are almost degenerate, coherences among them
do not contribute to the oscillatory term in equation (2).

The dynamical behavior of the system z(t) crucially
depends on the competition of two ingredients of zmn,
namely the correlation matrix of the initial state in the ba-
sis of the eigenstates of the symmetric Hamiltonian c∗mcn,
and the correlation matrix of the observable, the popula-
tion imbalance in the basis of the eigenstates of the sym-
metric Hamiltonian 〈Em|(n1 −n2)|En〉. Actually, the cor-
relation matrix of the population imbalance is responsible
for the suppression of oscillations allowed by the first term.
This suppression can be easily understood in terms of the
perturbative character of the hopping effects in the upper
region of the spectrum. In fact, the population imbalance
operator n1 − n2 will only connect states |n,N − n〉 to
themselves. Thus, for perturbatively weak hopping, large
components of one doublet will connect only to small com-
ponents of a different doublet, leading to small matrix el-
ements of this operator between different doublets.

As the occupied eigenstates are almost equally spaced
for z(0) < zc, the population imbalance z(t) oscillates
around zero at a fundamental oscillation frequency given
by the mean energy spacing of the occupied states, which
is given by the plasma frequency ωp = 2J

√
1 + Λ, with

Λ = (UN/2J) [4]. This behavior constitutes the regime
of Josephson oscillations as shown by the left graph of
the upper curves in Figure 2. Small deviations from equal
energy spacing lead to a dephasing of the oscillations on
a time scale inversely proportional to the number of oc-
cupied states and the corresponding differences in energy
splitting. The oscillations undergo revivals on time scales
given by the inverse of the frequency difference of adjacent
eigenstates. The revivals can be seen in the right graph of
the upper curves in Figure 2.

For values of z(0) > zc, where doublet states are oc-
cupied with negligible coherences between adjacent dou-

Fig. 2. Time evolution of the population imbalance for
100 particles with J/U = 3.333 and initial conditions z(0) =
0.3 (upper graph) and z(0) = 0.7 (lower graph).

blets, one has ideally two widely different time scales. For
short times, the population imbalance is locked to its ini-
tial value with small residual oscillations as shown by the
left graph of the lower curves in Figure 2. The frequency
of these small oscillations is determined by the inverse of
the energy separation of two quasi-degenerate doublets,
i.e. ∆E � NU . This regime is commonly referred to as
the “self-trapping” regime observed in reference [2]. The
presence of small oscillations is related to the weak mix-
ture of adjacent doublet pairs, since in the doublet region
of the energy spectrum the on-site interaction is domi-
nant and the hopping term can be treated as a pertur-
bation. It should however be noted, that on the much
larger time scale T � �/∆Edoublet associated with the
small splitting of energy doublets, which can be estimated
as ∆Edoublet/U = [2N(J/U)N ]/(N − 1)! through a non-
perturbative method [23] or via perturbation theory [24],
the atoms still undergo collective tunneling resulting in
oscillatory behavior of the population imbalance around
zero. This oscillatory behavior is guaranteed by the high
occupation of the quasi-degenerate doublets due to the
the initial condition (see the lower graph of Fig. 1) and the
population imbalance correlation matrix guarantees a high
coherence among pairs of quasi-degenerate doublets. How-
ever, this Josephson regime is far beyond experimental
observation, since those doublets are almost degenerate.
For instance, for N = 100 particles and J/U = 0.333 the
energy splitting of the topmost doublet can be estimated
to ∆Edoublet/U ∼ 10−202 which is indistinguishable from
zero and thus nor resulting in observable oscillatory be-
havior. Note furthermore that this ultralong tunneling
phenomenon requires tuning the symmetry of the two
wells, which is here modeled by the δ = 0 condition, to a
precision better than the scale set by the splitting of the
relevant quasi-degenerate doublets, and is therefore eas-
ily destroyed in practice, especially for the most narrowly
spaced upper doublets. Such slight breaking of the two well
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Fig. 3. Time average of ¯z(t)/z(0) over 50 plasma periods as a
function of the initial population imbalance (z(0)) for 100 par-

ticles. Josephson oscillations result in ¯z(t) = 0 while z(t) �= 0
indicates the regime of suppressed tunneling. The parameter
Λ = NU/2J determines the critical population imbalance sepa-
rating these two regimes. The arrows indicate the semi-classical
value of the critical imbalance population zc � 2

√
1 + Λ/Λ [4].

symmetry, while having a dramatic effect on the pair of
energy eigenstates corresponding to each of the doublets,
has otherwise essentially no effect, so that it does not, in
particular, affect the preceding analysis of the suppression
of tunneling.

In order to distinguish between oscillatory and non-
oscillatory behavior, we take the time average of the pop-
ulation imbalance ¯z(t) over 50 plasma periods (2π/ωp),
which is shown in Figure 3 as a function of the initial popu-
lation imbalance z(0) for different values of the parameter
Λ. The transition between the two regimes is marked by
the change of this average from zero to one, which pro-
vides a quantitative measure of the critical value zc. From
Figure 3 one finds that as the parameter Λ decreases, the
critical value zc increases for a fixed number of particles
N . This behavior can be traced back to the structure of
the energy spectrum: the number of quasi-degenerate dou-
blets decreases as the tunneling parameter J/U increases.
As a consequence, the quasi-degenerate doublets states are
situated at higher energies which can only be accessed by
larger values of z(0). The critical values zc follows very
well the semi-classical prediction zc � 2

√
1 + Λ/Λ [4] as

indicated by the arrows in Figure 3.
In conclusion, we have investigated the dynamics of

bosons in a double-well potential in the framework of a
two-mode Bose-Hubbard model. The evolution of the pop-
ulation imbalance in the two wells, prepared by suddenly
switching from an asymmetric to a symmetric double-
well potential, is explained solely in terms of the ini-
tial many-body wave function and the spectral proper-
ties of the Hamiltonian. The appearance of oscillatory
and self-trapping behavior is related to the occurrence of
two distinct regions of the energy spectrum, one of them
consisting of quasi-equidistant energy levels, the other of
quasi-degenerate doublets. Populations and coherences of
the initial wave function determine which parts of the
spectrum contribute to the dynamics. For initial pop-

ulation imbalance smaller than a critical value the oc-
cupation probability are larger in the lower part of the
energy spectrum with quasi-equidistant levels, contribut-
ing with large oscillation amplitude with a plasma fre-
quency ωp. For initial population imbalances larger than
a critical value the system oscillates with very small am-
plitude, with oscillation period of t � �/(U(N − 1)).
The small oscillations are related to hindered coherences
among pairs of quasi-degenerate doublets, since they are
weak mixtures of adjacent pairs of doublets. However,
for longer times beyond possible experimental observation
t � ∆Edoublet/U = (2N(J/U)N

�

(N−1)! ), the system is apt to re-
cover the Josephson oscillation behavior due to high occu-
pation of both members of quasi-degenerate doublets and
to coherences between them. We explored the dependence
of the critical population imbalance, which separates the
two dynamical regimes, on the relative tunneling parame-
ter J/U and find good agreement with semi-classical pre-
dictions.
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